Turing pattern formation in fractional activator-inhibitor systems.
نویسندگان
چکیده
Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of d representing the ratio of the diffusion constants of the inhibitor to the activator. Here we consider activator-inhibitor systems in which the diffusion is anomalous subdiffusion; the diffusion rates are manifest in both a diffusion constant and a diffusion exponent. A consideration of this problem in terms of continuous-time random walks with sources and sinks leads to a reaction-diffusion system with fractional order temporal derivatives operating on the spatial Laplacian. We have carried out an algebraic stability analysis of the homogeneous steady-state solution in fractional activator-inhibitor systems, with Gierer-Meinhardt reaction kinetics and with Brusselator reaction kinetics. For each class of reaction kinetics we identify a Turing instability bifurcation curve in the two-dimensional diffusion parameter space. The critical value of d , for Turing instabilities, decreases monotonically with the anomalous diffusion exponent between unity (standard diffusion) and zero (extreme subdiffusion). We have also carried out numerical simulations of the governing fractional activator-inhibitor equations and we show that the Turing instability precipitates the formation of complex spatiotemporal patterns. If the diffusion of the activator and inhibitor have the same anomalous scaling properties, then the surface profiles of these patterns for values of d slightly above the critical value varies from smooth stationary patterns to increasingly rough and nonstationary patterns as the anomalous diffusion exponent varies from unity towards zero. If the diffusion of the activator is anomalous subdiffusion but the diffusion of the inhibitor is standard diffusion, we find stable stationary Turing patterns for values of d well below the threshold values for pattern formation in standard activator-inhibitor systems.
منابع مشابه
Applied Mathematics Report Amr01/7 Existence of Turing Instabilities in a Two-species Fractional Reaction-diffusion System
We introduce a two-species fractional reaction-diffusion system to model activatorinhibitor dynamics with anomalous diffusion such as occurs in spatially inhomogeneous media. Conditions are derived for Turing instability induced pattern formation in these fractional activatorinhibitor systems whereby the homogeneous steady state solution is stable in the absence of diffusion, but becomes unstab...
متن کاملExistence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System
We introduce a two-species fractional reaction-diffusion system to model activatorinhibitor dynamics with anomalous diffusion such as occurs in spatially inhomogeneous media. Conditions are derived for Turing-instability induced pattern formation in these fractional activatorinhibitor systems whereby the homogeneous steady state solution is stable in the absence of diffusion but becomes unstabl...
متن کاملTuring patterns in network-organized activator-inhibitor systems
Turing instability in activator-inhibitor systems provides a paradigm of nonequilibrium pattern formation; it has been extensively investigated for biological and chemical processes. Turing pattern formation should furthermore be possible in network-organized systems, such as cellular networks in morphogenesis and ecological metapopulations with dispersal connections between habitats, but inves...
متن کاملBeyond activator-inhibitor networks: the generalised Turing mechanism
The Turing patterning mechanism is believed to underly the formation of repetitive structures in development, such as zebrafish stripes and mammalian digits, but it has proved difficult to isolate the specific biochemical species responsible for pattern formation. Meanwhile, synthetic biologists have designed Turing systems for implementation in cell colonies, but none have yet led to visible p...
متن کاملTuring pattern formation with fractional diffusion and fractional reactions
We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2005